Nuprl Lemma : geo-conga-to-cong3

E:BasicGeometry. ∀a,b,c,d,e,f:Point.
  (a ≠ b
   c ≠ b
   d ≠ e
   f ≠ e
   abc ≅a def
   (∃a',c',d',f':Point. (out(b a'a) ∧ out(b cc') ∧ out(e d'd) ∧ out(e ff') ∧ Cong3(a'bc',d'ef'))))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-tri: Cong3(abc,a'b'c') geo-cong-angle: abc ≅a xyz basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-cong-angle: abc ≅a xyz and: P ∧ Q exists: x:A. B[x] member: t ∈ T cand: c∧ B geo-out: out(p ab) basic-geometry: BasicGeometry not: ¬A false: False uall: [x:A]. B[x] subtype_rel: A ⊆B prop: geo-cong-tri: Cong3(abc,a'b'c') uiff: uiff(P;Q) uimplies: supposing a guard: {T}
Lemmas referenced :  geo-between-sep geo-sep-sym geo-between_wf istype-void geo-congruent-iff-length geo-length-flip geo-out_wf geo-cong-tri_wf geo-cong-angle_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin dependent_pairFormation_alt hypothesisEquality cut introduction extract_by_obid dependent_functionElimination because_Cache independent_functionElimination hypothesis independent_pairFormation voidElimination sqequalRule productIsType functionIsType universeIsType isectElimination applyEquality inhabitedIsType independent_isectElimination equalityTransitivity equalitySymmetry instantiate

Latex:
\mforall{}E:BasicGeometry.  \mforall{}a,b,c,d,e,f:Point.
    (a  \mneq{}  b
    {}\mRightarrow{}  c  \mneq{}  b
    {}\mRightarrow{}  d  \mneq{}  e
    {}\mRightarrow{}  f  \mneq{}  e
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  def
    {}\mRightarrow{}  (\mexists{}a',c',d',f':Point.  (out(b  a'a)  \mwedge{}  out(b  cc')  \mwedge{}  out(e  d'd)  \mwedge{}  out(e  ff')  \mwedge{}  Cong3(a'bc',d'ef'))))



Date html generated: 2019_10_16-PM-01_28_29
Last ObjectModification: 2018_11_07-PM-00_57_51

Theory : euclidean!plane!geometry


Home Index