Nuprl Lemma : geo-gt-implies-lt

g:EuclideanPlane. ∀a,b,c,d:Point.  (ab > cd  (¬¬|cd| < |ab|))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-gt: cd > ab geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False geo-gt: cd > ab squash: T exists: x:A. B[x] and: P ∧ Q geo-lt: p < q member: t ∈ T cand: c∧ B uall: [x:A]. B[x] basic-geometry: BasicGeometry uimplies: supposing a uiff: uiff(P;Q) euclidean-plane: EuclideanPlane prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  geo-add-length-between geo-congruent-iff-length geo-add-length_wf geo-length_wf geo-mk-seg_wf equal_wf geo-length-type_wf geo-le_wf iff_weakening_equal geo-le-same geo-sep_wf geo-lt_wf istype-void geo-gt_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin sqequalHypSubstitution imageElimination productElimination independent_functionElimination dependent_pairFormation_alt hypothesisEquality hypothesis independent_pairFormation introduction extract_by_obid isectElimination sqequalRule because_Cache independent_isectElimination dependent_functionElimination equalitySymmetry dependent_set_memberEquality_alt equalityTransitivity productIsType equalityIstype inhabitedIsType applyLambdaEquality setElimination rename hyp_replacement applyEquality lambdaEquality_alt natural_numberEquality imageMemberEquality baseClosed universeIsType voidElimination functionIsType instantiate

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d:Point.    (ab  >  cd  {}\mRightarrow{}  (\mneg{}\mneg{}|cd|  <  |ab|))



Date html generated: 2019_10_16-PM-01_19_16
Last ObjectModification: 2019_06_18-AM-10_56_10

Theory : euclidean!plane!geometry


Home Index