Nuprl Lemma : geo-length-between-property

e:BasicGeometry. ∀p,q:{p:Point| O_X_p} . ∀a,b,c,d:Point.
  (X_p_q  (p |ab| ∈ Length)  (q |cd| ∈ Length)  X_|ab|_|cd|)


Proof




Definitions occuring in Statement :  geo-length: |s| geo-length-type: Length geo-mk-seg: ab basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-point: Point all: x:A. B[x] implies:  Q set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T basic-geometry: BasicGeometry iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q geo-le: p ≤ q exists: x:A. B[x] cand: c∧ B subtype_rel: A ⊆B uall: [x:A]. B[x] euclidean-plane: EuclideanPlane prop: squash: T guard: {T} uimplies: supposing a
Lemmas referenced :  geo-le-iff-between-points subtype-geo-length-type geo-between_wf geo-X_wf geo-length_wf1 geo-mk-seg_wf geo-length_wf geo-length-type_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-O_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination hypothesis dependent_pairFormation_alt because_Cache independent_pairFormation sqequalRule productIsType equalityIstype applyEquality isectElimination equalityTransitivity equalitySymmetry universeIsType setElimination rename imageMemberEquality baseClosed inhabitedIsType instantiate independent_isectElimination setIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q:\{p:Point|  O\_X\_p\}  .  \mforall{}a,b,c,d:Point.
    (X\_p\_q  {}\mRightarrow{}  (p  =  |ab|)  {}\mRightarrow{}  (q  =  |cd|)  {}\mRightarrow{}  X\_|ab|\_|cd|)



Date html generated: 2019_10_16-PM-01_39_23
Last ObjectModification: 2019_02_28-PM-03_05_56

Theory : euclidean!plane!geometry


Home Index