Nuprl Lemma : geo-length-between-property
∀e:BasicGeometry. ∀p,q:{p:Point| O_X_p} . ∀a,b,c,d:Point.
  (X_p_q 
⇒ (p = |ab| ∈ Length) 
⇒ (q = |cd| ∈ Length) 
⇒ X_|ab|_|cd|)
Proof
Definitions occuring in Statement : 
geo-length: |s|
, 
geo-length-type: Length
, 
geo-mk-seg: ab
, 
basic-geometry: BasicGeometry
, 
geo-X: X
, 
geo-O: O
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
basic-geometry: BasicGeometry
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
geo-le: p ≤ q
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
euclidean-plane: EuclideanPlane
, 
prop: ℙ
, 
squash: ↓T
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
geo-le-iff-between-points, 
subtype-geo-length-type, 
geo-between_wf, 
geo-X_wf, 
geo-length_wf1, 
geo-mk-seg_wf, 
geo-length_wf, 
geo-length-type_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-O_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
hypothesis, 
dependent_pairFormation_alt, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
equalityIstype, 
applyEquality, 
isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
setElimination, 
rename, 
imageMemberEquality, 
baseClosed, 
inhabitedIsType, 
instantiate, 
independent_isectElimination, 
setIsType
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q:\{p:Point|  O\_X\_p\}  .  \mforall{}a,b,c,d:Point.
    (X\_p\_q  {}\mRightarrow{}  (p  =  |ab|)  {}\mRightarrow{}  (q  =  |cd|)  {}\mRightarrow{}  X\_|ab|\_|cd|)
Date html generated:
2019_10_16-PM-01_39_23
Last ObjectModification:
2019_02_28-PM-03_05_56
Theory : euclidean!plane!geometry
Home
Index