Nuprl Lemma : geo-lt-add1-iff
∀e:BasicGeometry. ∀p,q,r:{a:Point| O_X_a} .  (X ≠ p 
⇒ X ≠ q 
⇒ X ≠ r 
⇒ (p < q 
⇐⇒ p + r < q + r))
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-add-length: p + q
, 
basic-geometry: BasicGeometry
, 
geo-X: X
, 
geo-O: O
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
basic-geometry: BasicGeometry
, 
euclidean-plane: EuclideanPlane
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
geo-lt_wf, 
subtype-geo-length-type, 
geo-add-length_wf, 
geo-sep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
basic-geometry-subtype, 
subtype_rel_transitivity, 
basic-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-X_wf, 
geo-point_wf, 
geo-between_wf, 
geo-O_wf, 
geo-lt-add1_2, 
geo-add-length-comm, 
geo-add-length-cancel-left-lt, 
squash_wf, 
true_wf, 
geo-length-type_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
instantiate, 
independent_isectElimination, 
dependent_functionElimination, 
setElimination, 
rename, 
inhabitedIsType, 
setIsType, 
independent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q,r:\{a:Point|  O\_X\_a\}  .    (X  \mneq{}  p  {}\mRightarrow{}  X  \mneq{}  q  {}\mRightarrow{}  X  \mneq{}  r  {}\mRightarrow{}  (p  <  q  \mLeftarrow{}{}\mRightarrow{}  p  +  r  <  q  +  r))
Date html generated:
2019_10_16-PM-01_35_48
Last ObjectModification:
2019_01_16-AM-09_23_36
Theory : euclidean!plane!geometry
Home
Index