Nuprl Lemma : geo-lt-add1-iff

e:BasicGeometry. ∀p,q,r:{a:Point| O_X_a} .  (X ≠  X ≠  X ≠  (p < ⇐⇒ r < r))


Proof




Definitions occuring in Statement :  geo-lt: p < q geo-add-length: q basic-geometry: BasicGeometry geo-X: X geo-O: O geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] iff: ⇐⇒ Q implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B prop: rev_implies:  Q guard: {T} uimplies: supposing a basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane squash: T true: True
Lemmas referenced :  geo-lt_wf subtype-geo-length-type geo-add-length_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-X_wf geo-point_wf geo-between_wf geo-O_wf geo-lt-add1_2 geo-add-length-comm geo-add-length-cancel-left-lt squash_wf true_wf geo-length-type_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality hypothesis sqequalRule because_Cache instantiate independent_isectElimination dependent_functionElimination setElimination rename inhabitedIsType setIsType independent_functionElimination hyp_replacement equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity natural_numberEquality imageMemberEquality baseClosed

Latex:
\mforall{}e:BasicGeometry.  \mforall{}p,q,r:\{a:Point|  O\_X\_a\}  .    (X  \mneq{}  p  {}\mRightarrow{}  X  \mneq{}  q  {}\mRightarrow{}  X  \mneq{}  r  {}\mRightarrow{}  (p  <  q  \mLeftarrow{}{}\mRightarrow{}  p  +  r  <  q  +  r))



Date html generated: 2019_10_16-PM-01_35_48
Last ObjectModification: 2019_01_16-AM-09_23_36

Theory : euclidean!plane!geometry


Home Index