Step
*
2
1
2
2
1
2
2
of Lemma
geo-lt-lengths-to-sep
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a # c
7. a # b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw ≅ ab
12. w # c
13. w # b
14. ¬Colinear(a;b;c)
15. w' : Point
16. B(aw'c)
17. bc ≅ w'c
18. w # w'
19. B(w'wc)
20. u : Point
21. v : Point
22. au ≅ aw ∧ av ≅ aw ∧ cu ≅ cw' ∧ cv ≅ cw' ∧ u leftof ac ∧ v leftof ca
⊢ b # c
BY
{ ((InstLemma `geo-sep-or` [⌜e⌝;⌜u⌝;⌜v⌝;⌜b⌝]⋅ THEN Auto) THEN InstLemma `left-right-sep` [⌜e⌝]⋅ THEN Auto) }
Latex:
Latex:
1. e : EuclideanPlane
2. a : Point
3. b : Point
4. c : Point
5. |ab| < |ac|
6. a \# c
7. a \# b
8. |bc| < |ac|
9. w : Point
10. B(awc)
11. aw \mcong{} ab
12. w \# c
13. w \# b
14. \mneg{}Colinear(a;b;c)
15. w' : Point
16. B(aw'c)
17. bc \mcong{} w'c
18. w \# w'
19. B(w'wc)
20. u : Point
21. v : Point
22. au \mcong{} aw \mwedge{} av \mcong{} aw \mwedge{} cu \mcong{} cw' \mwedge{} cv \mcong{} cw' \mwedge{} u leftof ac \mwedge{} v leftof ca
\mvdash{} b \# c
By
Latex:
((InstLemma `geo-sep-or` [\mkleeneopen{}e\mkleeneclose{};\mkleeneopen{}u\mkleeneclose{};\mkleeneopen{}v\mkleeneclose{};\mkleeneopen{}b\mkleeneclose{}]\mcdot{} THEN Auto)
THEN InstLemma `left-right-sep` [\mkleeneopen{}e\mkleeneclose{}]\mcdot{}
THEN Auto)
Home
Index