Nuprl Lemma : geo-out-strict_transitivity

e:BasicGeometry. ∀a,b,c,d:Point.
  (b ≠  geo-out-strict(e;a;b;c)  geo-out-strict(e;a;c;d)  geo-out-strict(e;a;b;d))


Proof




Definitions occuring in Statement :  geo-out-strict: geo-out-strict(e;p;a;b) basic-geometry: BasicGeometry geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q geo-out-strict: geo-out-strict(e;p;a;b) not: ¬A and: P ∧ Q member: t ∈ T subtype_rel: A ⊆B basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane basic-geometry-: BasicGeometry- uall: [x:A]. B[x] false: False prop: guard: {T} uimplies: supposing a geo-strict-between: a-b-c cand: c∧ B
Lemmas referenced :  geo-strict-between-sym subtype_rel_self basic-geometry-_wf geo-strict-between-trans geo-strict-between-trans2 geo-strict-between-trans3 geo-strict-between_wf istype-void geo-out-strict_wf geo-sep_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-between-same-side geo-strict-between-implies-between geo-strict-between-sep2 geo-between_wf geo-strict-between-sep1 geo-sep-sym geo-between-middle geo-between-symmetry geo-between-inner-trans
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_functionElimination independent_pairFormation cut hypothesis introduction extract_by_obid dependent_functionElimination hypothesisEquality applyEquality sqequalRule instantiate isectElimination because_Cache voidElimination universeIsType productIsType functionIsType independent_isectElimination inhabitedIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c,d:Point.
    (b  \mneq{}  d  {}\mRightarrow{}  geo-out-strict(e;a;b;c)  {}\mRightarrow{}  geo-out-strict(e;a;c;d)  {}\mRightarrow{}  geo-out-strict(e;a;b;d))



Date html generated: 2019_10_16-PM-01_23_00
Last ObjectModification: 2019_08_27-AM-08_00_41

Theory : euclidean!plane!geometry


Home Index