Nuprl Lemma : geo-out-unicity

e:BasicGeometry. ∀a,b,c:Point.  (out(a bc)  ab ≅ ac  b ≡ c)


Proof




Definitions occuring in Statement :  geo-out: out(p ab) basic-geometry: BasicGeometry geo-eq: a ≡ b geo-congruent: ab ≅ cd geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  false: False iff: ⇐⇒ Q guard: {T} subtype_rel: A ⊆B true: True prop: squash: T uiff: uiff(P;Q) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T not: ¬A geo-eq: a ≡ b and: P ∧ Q geo-out: out(p ab) implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-add-length_wf geo-eq_inversion geo-mk-seg_wf geo-length_wf geo-point_wf geo-out_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry_wf subtype_rel_transitivity basic-geometry-subtype geo-congruent_wf geo-sep_wf geo-between_wf geo-add-length-implies-eq iff_weakening_equal geo-length-type_wf true_wf squash_wf equal_wf geo-congruent-iff-length geo-add-length-between
Rules used in proof :  instantiate voidElimination baseClosed imageMemberEquality sqequalRule natural_numberEquality universeEquality equalityTransitivity imageElimination lambdaEquality applyEquality equalitySymmetry because_Cache dependent_functionElimination hypothesis independent_isectElimination hypothesisEquality isectElimination extract_by_obid cut independent_pairFormation independent_functionElimination introduction thin productElimination sqequalHypSubstitution lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:BasicGeometry.  \mforall{}a,b,c:Point.    (out(a  bc)  {}\mRightarrow{}  ab  \00D0  ac  {}\mRightarrow{}  b  \mequiv{}  c)



Date html generated: 2017_10_02-PM-06_27_34
Last ObjectModification: 2017_08_05-PM-04_40_43

Theory : euclidean!plane!geometry


Home Index