Nuprl Lemma : geo-perp-all-symmetry

e:BasicGeometry. ∀[a,b,c,d:Point].  (ab ⊥ cd  {ba ⊥ cd ∧ ab ⊥ dc ∧ ba ⊥ dc ∧ cd ⊥ ab ∧ dc ⊥ ab ∧ cd ⊥ ba ∧ dc ⊥ ba})


Proof




Definitions occuring in Statement :  geo-perp: ab ⊥ cd basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q guard: {T} and: P ∧ Q geo-perp: ab ⊥ cd exists: x:A. B[x] member: t ∈ T prop: subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  geo-perp-in-symmetry geo-perp-in_wf geo-perp_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation independent_pairFormation sqequalHypSubstitution productElimination thin dependent_pairFormation hypothesisEquality cut introduction extract_by_obid dependent_functionElimination because_Cache isectElimination independent_functionElimination hypothesis applyEquality instantiate independent_isectElimination sqequalRule

Latex:
\mforall{}e:BasicGeometry
    \mforall{}[a,b,c,d:Point].
        (ab  \mbot{}  cd  {}\mRightarrow{}  \{ba  \mbot{}  cd  \mwedge{}  ab  \mbot{}  dc  \mwedge{}  ba  \mbot{}  dc  \mwedge{}  cd  \mbot{}  ab  \mwedge{}  dc  \mbot{}  ab  \mwedge{}  cd  \mbot{}  ba  \mwedge{}  dc  \mbot{}  ba\})



Date html generated: 2018_05_22-PM-00_04_52
Last ObjectModification: 2018_04_19-AM-00_20_53

Theory : euclidean!plane!geometry


Home Index