Nuprl Lemma : geo-perp-in-symmetry

e:BasicGeometry. ∀x:Point.
  ∀[a,b,c,d:Point].  (ab  ⊥cd  {ba  ⊥cd ∧ ab  ⊥dc ∧ ba  ⊥dc ∧ cd  ⊥ab ∧ dc  ⊥ab ∧ cd  ⊥ba ∧ dc  ⊥ba})


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q member: t ∈ T guard: {T} and: P ∧ Q cand: c∧ B prop: subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  geo-perp-in-symmetry1 geo-perp-in-symmetry2 geo-perp-in_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache independent_pairFormation hypothesis isectElimination applyEquality instantiate independent_isectElimination sqequalRule independent_functionElimination

Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.
    \mforall{}[a,b,c,d:Point].
        (ab    \mbot{}x  cd
        {}\mRightarrow{}  \{ba    \mbot{}x  cd  \mwedge{}  ab    \mbot{}x  dc  \mwedge{}  ba    \mbot{}x  dc  \mwedge{}  cd    \mbot{}x  ab  \mwedge{}  dc    \mbot{}x  ab  \mwedge{}  cd    \mbot{}x  ba  \mwedge{}  dc    \mbot{}x  ba\})



Date html generated: 2018_05_22-PM-00_04_32
Last ObjectModification: 2018_04_18-PM-09_59_25

Theory : euclidean!plane!geometry


Home Index