Nuprl Lemma : geo-perp-in-symmetry2

e:BasicGeometry. ∀x:Point.  ∀[a,b,c,d:Point].  (ab  ⊥cd  ba  ⊥cd)


Proof




Definitions occuring in Statement :  geo-perp-in: ab  ⊥cd basic-geometry: BasicGeometry geo-point: Point uall: [x:A]. B[x] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] implies:  Q geo-perp-in: ab  ⊥cd and: P ∧ Q cand: c∧ B member: t ∈ T subtype_rel: A ⊆B guard: {T} uimplies: supposing a sq_stable: SqStable(P) basic-geometry: BasicGeometry geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A less_than: a < b squash: T true: True select: L[n] cons: [a b] subtract: m prop:
Lemmas referenced :  sq_stable__colinear euclidean-plane-structure-subtype euclidean-plane-subtype basic-geometry-subtype subtype_rel_transitivity basic-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-colinear-is-colinear-set length_of_cons_lemma istype-void length_of_nil_lemma istype-false istype-le istype-less_than geo-colinear_wf geo-perp-in_wf geo-point_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality applyEquality hypothesis instantiate isectElimination independent_isectElimination sqequalRule because_Cache independent_functionElimination isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation imageMemberEquality baseClosed productIsType imageElimination universeIsType inhabitedIsType

Latex:
\mforall{}e:BasicGeometry.  \mforall{}x:Point.    \mforall{}[a,b,c,d:Point].    (ab    \mbot{}x  cd  {}\mRightarrow{}  ba    \mbot{}x  cd)



Date html generated: 2019_10_16-PM-01_29_05
Last ObjectModification: 2018_11_13-PM-00_25_06

Theory : euclidean!plane!geometry


Home Index