Nuprl Lemma : geo-perp-in-unicity1
∀e:BasicGeometry. ∀x,a,b,c:Point.  (ba  ⊥x ca 
⇒ x ≡ a)
Proof
Definitions occuring in Statement : 
geo-perp-in: ab  ⊥x cd
, 
basic-geometry: BasicGeometry
, 
geo-eq: a ≡ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
and: P ∧ Q
, 
geo-perp-in: ab  ⊥x cd
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
geo-colinear-same, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-point_wf, 
geo-perp-in_wf, 
geo-eq_weakening, 
right-angle_functionality, 
right-angle-legs-same, 
right-angle_wf
Rules used in proof : 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesis, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
impliesLevelFunctionality, 
allLevelFunctionality, 
levelHypothesis, 
impliesFunctionality, 
allFunctionality, 
addLevel, 
promote_hyp
Latex:
\mforall{}e:BasicGeometry.  \mforall{}x,a,b,c:Point.    (ba    \mbot{}x  ca  {}\mRightarrow{}  x  \mequiv{}  a)
Date html generated:
2017_10_02-PM-06_43_22
Last ObjectModification:
2017_08_05-PM-04_49_20
Theory : euclidean!plane!geometry
Home
Index