Nuprl Lemma : geo-sep-irrefl2

e:EuclideanPlane. ∀[a,b:Point].  ¬(a b ∈ Point) supposing a ≠ b


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-sep: a ≠ b geo-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  subtype_rel: A ⊆B prop: false: False implies:  Q not: ¬A uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] all: x:A. B[x]
Lemmas referenced :  euclidean-plane_wf geo-sep_wf geo-point_wf equal_wf geo-sep-irrefl
Rules used in proof :  equalitySymmetry equalityTransitivity isect_memberEquality lambdaEquality sqequalRule applyEquality because_Cache voidElimination independent_functionElimination hypothesis independent_isectElimination isectElimination hypothesisEquality dependent_functionElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    \mneg{}(a  =  b)  supposing  a  \mneq{}  b



Date html generated: 2017_10_02-PM-04_40_16
Last ObjectModification: 2017_08_08-PM-01_49_00

Theory : euclidean!plane!geometry


Home Index