Nuprl Lemma : geo-sep-irrefl
∀e:EuclideanPlane. ∀[a,b:Point].  ¬a ≠ b supposing a = b ∈ Point
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
geo-eq: a ≡ b
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-point_wf, 
equal_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-sep_wf, 
geo-eq_weakening
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
because_Cache, 
dependent_functionElimination, 
lambdaEquality, 
sqequalRule, 
instantiate, 
applyEquality, 
voidElimination, 
independent_functionElimination, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}[a,b:Point].    \mneg{}a  \mneq{}  b  supposing  a  =  b
Date html generated:
2017_10_02-PM-04_40_14
Last ObjectModification:
2017_08_08-PM-01_48_18
Theory : euclidean!plane!geometry
Home
Index