Nuprl Lemma : geo-strict-between-same-side2
∀e:BasicGeometry. ∀[A,B,C,D:Point].  (¬((¬B-C-D) ∧ (¬B-D-C))) supposing (C ≠ D and A-B-C and A-B-D)
Proof
Definitions occuring in Statement : 
basic-geometry: BasicGeometry
, 
geo-strict-between: a-b-c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
Definitions unfolded in proof : 
prop: ℙ
, 
and: P ∧ Q
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
geo-strict-between: a-b-c
Lemmas referenced : 
geo-point_wf, 
geo-sep_wf, 
geo-strict-between_wf, 
not_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry_wf, 
subtype_rel_transitivity, 
basic-geometry-subtype, 
geo-strict-between-sep2, 
geo-strict-between-implies-between, 
geo-between-same-side2, 
geo-between_wf, 
geo-strict-between-sep3, 
geo-sep-sym
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
isect_memberEquality, 
lambdaEquality, 
productEquality, 
voidElimination, 
independent_pairFormation, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
instantiate, 
applyEquality, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:BasicGeometry.  \mforall{}[A,B,C,D:Point].    (\mneg{}((\mneg{}B-C-D)  \mwedge{}  (\mneg{}B-D-C)))  supposing  (C  \mneq{}  D  and  A-B-C  and  A-B-D)
Date html generated:
2017_10_02-PM-06_17_31
Last ObjectModification:
2017_08_05-PM-04_12_39
Theory : euclidean!plane!geometry
Home
Index