Nuprl Lemma : geo-zero-angle-congruence-subst

g:EuclideanPlane. ∀a,b,c,x,y,z:Point.  (abc ≅a xyx  aba ≅a xyx)


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] basic-geometry: BasicGeometry prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a geo-out: out(p ab) and: P ∧ Q geo-cong-angle: abc ≅a xyz
Lemmas referenced :  geo-zero-angle-congruence-out geo-cong-angle_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-out_inversion geo-out_weakening geo-eq_weakening out-preserves-angle-cong_1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis universeIsType isectElimination sqequalRule inhabitedIsType applyEquality instantiate independent_isectElimination because_Cache productElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,x,y,z:Point.    (abc  \mcong{}\msuba{}  xyx  {}\mRightarrow{}  aba  \mcong{}\msuba{}  xyx)



Date html generated: 2019_10_16-PM-01_28_09
Last ObjectModification: 2018_11_08-PM-00_22_05

Theory : euclidean!plane!geometry


Home Index