Nuprl Lemma : half-plane-cong-angle_wf
∀g:EuclideanPlane. ∀[d,a,b,c:Point].  (abc ≅ρ dbc ∈ ℙ)
Proof
Definitions occuring in Statement : 
half-plane-cong-angle: abc ≅ρ dbc
, 
euclidean-plane: EuclideanPlane
, 
geo-point: Point
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
half-plane-cong-angle: abc ≅ρ dbc
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
geo-left_wf, 
geo-colinear_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
independent_isectElimination, 
isect_memberEquality
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}[d,a,b,c:Point].    (abc  \00D0\mrho{}  dbc  \mmember{}  \mBbbP{})
Date html generated:
2017_10_02-PM-04_48_47
Last ObjectModification:
2017_08_24-PM-03_32_42
Theory : euclidean!plane!geometry
Home
Index