Nuprl Lemma : half-plane-cong-angle_wf

g:EuclideanPlane. ∀[d,a,b,c:Point].  (abc ≅ρ dbc ∈ ℙ)


Proof




Definitions occuring in Statement :  half-plane-cong-angle: abc ≅ρ dbc euclidean-plane: EuclideanPlane geo-point: Point uall: [x:A]. B[x] prop: all: x:A. B[x] member: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T half-plane-cong-angle: abc ≅ρ dbc prop: and: P ∧ Q subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  geo-left_wf geo-colinear_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut sqequalRule productEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache hypothesis axiomEquality equalityTransitivity equalitySymmetry instantiate independent_isectElimination isect_memberEquality

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}[d,a,b,c:Point].    (abc  \00D0\mrho{}  dbc  \mmember{}  \mBbbP{})



Date html generated: 2017_10_02-PM-04_48_47
Last ObjectModification: 2017_08_24-PM-03_32_42

Theory : euclidean!plane!geometry


Home Index