Nuprl Lemma : left-right-sep

g:OrientedPlane. ∀a,b,c,d:Point.  (a leftof cd  leftof dc  a ≠ b)


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-left: leftof bc geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  guard: {T} oriented-plane: Error :oriented-plane,  prop: uimplies: supposing a uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q exists: x:A. B[x] member: t ∈ T implies:  Q all: x:A. B[x] or: P ∨ Q geo-lsep: bc false: False cand: c∧ B not: ¬A geo-colinear: Colinear(a;b;c)
Lemmas referenced :  Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  Error :o-geo-structure_wf,  Error :oriented-plane_wf,  subtype_rel_transitivity Error :oriented-plane-subtype1,  Error :o-geo-structure-subtype,  geo-point_wf geo-left_wf geo-between-sep Error :oriented-plane-subtype,  geo-between-symmetry geo-sep-sym Error :use-plane-sep,  geo-between_wf not_wf lsep-colinear-sep
Rules used in proof :  instantiate rename setElimination independent_isectElimination isectElimination sqequalRule applyEquality because_Cache productElimination hypothesis independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution inrFormation productEquality voidElimination independent_pairFormation

Latex:
\mforall{}g:OrientedPlane.  \mforall{}a,b,c,d:Point.    (a  leftof  cd  {}\mRightarrow{}  b  leftof  dc  {}\mRightarrow{}  a  \mneq{}  b)



Date html generated: 2017_10_02-PM-04_47_33
Last ObjectModification: 2017_08_05-AM-10_20_16

Theory : euclidean!plane!geometry


Home Index