Nuprl Lemma : not-dist-lemma-lt

g:EuclideanPlane. ∀a,b,c,d,e,f:Point.  ((¬D(a;b;c;d;e;f))  |ef| < |ab| |cd|))


Proof




Definitions occuring in Statement :  dist: D(a;b;c;d;e;f) geo-lt: p < q geo-add-length: q geo-length: |s| geo-mk-seg: ab euclidean-plane: EuclideanPlane geo-point: Point all: x:A. B[x] not: ¬A implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q uall: [x:A]. B[x] basic-geometry: BasicGeometry euclidean-plane: EuclideanPlane prop: subtype_rel: A ⊆B guard: {T} uimplies: supposing a
Lemmas referenced :  dist-iff-lt geo-lt_wf geo-length_wf geo-mk-seg_wf geo-add-length_wf not_wf dist_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut thin hypothesis sqequalHypSubstitution independent_functionElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality productElimination voidElimination universeIsType isectElimination sqequalRule setElimination rename because_Cache inhabitedIsType applyEquality instantiate independent_isectElimination

Latex:
\mforall{}g:EuclideanPlane.  \mforall{}a,b,c,d,e,f:Point.    ((\mneg{}D(a;b;c;d;e;f))  {}\mRightarrow{}  (\mneg{}|ef|  <  |ab|  +  |cd|))



Date html generated: 2019_10_16-PM-02_51_21
Last ObjectModification: 2018_10_03-PM-00_27_25

Theory : euclidean!plane!geometry


Home Index