Nuprl Lemma : not-geo-lt
∀g:EuclideanPlane. ∀p,q:Length.  (¬p < q 
⇐⇒ q ≤ p)
Proof
Definitions occuring in Statement : 
geo-lt: p < q
, 
geo-le: p ≤ q
, 
geo-length-type: Length
, 
euclidean-plane: EuclideanPlane
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
basic-geometry: BasicGeometry
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
not: ¬A
, 
false: False
, 
or: P ∨ Q
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
geo-length-type: Length
, 
quotient: x,y:A//B[x; y]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
not_wf, 
geo-lt_wf, 
geo-le_wf, 
geo-length-type_wf, 
euclidean-plane_wf, 
stable__geo-le, 
false_wf, 
or_wf, 
istype-void, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
equal-wf-base, 
geo-eq_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
not-geo-lt-points
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
voidElimination, 
inhabitedIsType, 
dependent_functionElimination, 
functionEquality, 
unionIsType, 
functionIsType, 
because_Cache, 
independent_isectElimination, 
unionElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
productEquality, 
applyEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality_alt, 
setElimination, 
rename
Latex:
\mforall{}g:EuclideanPlane.  \mforall{}p,q:Length.    (\mneg{}p  <  q  \mLeftarrow{}{}\mRightarrow{}  q  \mleq{}  p)
Date html generated:
2019_10_16-PM-01_37_40
Last ObjectModification:
2018_10_04-AM-11_18_24
Theory : euclidean!plane!geometry
Home
Index