Nuprl Lemma : not-parallel-implies

eu:EuclideanParPlane. ∀l,m,n:Line.  ((¬|| m)  (l || n ∧ || n)))


Proof




Definitions occuring in Statement :  euclidean-parallel-plane: EuclideanParPlane geo-Aparallel: || m geo-line: Line all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False and: P ∧ Q member: t ∈ T guard: {T} subtype_rel: A ⊆B prop: uall: [x:A]. B[x] uimplies: supposing a
Lemmas referenced :  geo-Aparallel_inversion euclidean-planes-subtype geo-Aparallel_wf euclidean-plane-structure-subtype subtype_rel_transitivity euclidean-parallel-plane_wf euclidean-plane-structure_wf geo-primitives_wf not_wf geo-line_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin sqequalHypSubstitution productElimination hypothesis independent_functionElimination introduction extract_by_obid dependent_functionElimination hypothesisEquality applyEquality sqequalRule voidElimination productEquality isectElimination instantiate independent_isectElimination because_Cache

Latex:
\mforall{}eu:EuclideanParPlane.  \mforall{}l,m,n:Line.    ((\mneg{}l  ||  m)  {}\mRightarrow{}  (\mneg{}(l  ||  n  \mwedge{}  m  ||  n)))



Date html generated: 2018_05_22-PM-01_15_23
Last ObjectModification: 2018_04_16-AM-10_59_58

Theory : euclidean!plane!geometry


Home Index