Nuprl Lemma : oriented-plane-axioms

g:OrientedPlane. ∀P:OrientedPlane ⟶ ℙ.
  ((∀g:OrientedPlane. (BasicGeometryAxioms(g)  geo-left-axioms(g)  P[g]))  P[g])


Proof




Definitions occuring in Statement :  oriented-plane: OrientedPlane geo-left-axioms: geo-left-axioms(g) basic-geo-axioms: BasicGeometryAxioms(g) prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  so_apply: x[s] uimplies: supposing a guard: {T} so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: squash: T sq_stable: SqStable(P) subtype_rel: A ⊆B and: P ∧ Q oriented-plane: Error :oriented-plane,  member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-left-axioms_wf Error :basic-geo-primitives_wf,  Error :basic-geo-structure_wf,  basic-geometry-_wf subtype_rel_transitivity Error :oriented-plane-subtype,  basic-geometry--subtype basic-geo-axioms_wf Error :oriented-plane_wf,  all_wf sq_stable__geo-left-axioms-1 Error :o-geo-structure-subtype,  sq_stable__geo-axioms
Rules used in proof :  universeEquality functionExtensionality independent_isectElimination functionEquality cumulativity lambdaEquality isectElimination instantiate imageElimination baseClosed imageMemberEquality sqequalRule applyEquality productElimination extract_by_obid introduction rename setElimination independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:OrientedPlane.  \mforall{}P:OrientedPlane  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}g:OrientedPlane.  (BasicGeometryAxioms(g)  {}\mRightarrow{}  geo-left-axioms(g)  {}\mRightarrow{}  P[g]))  {}\mRightarrow{}  P[g])



Date html generated: 2017_10_02-PM-06_49_07
Last ObjectModification: 2017_08_06-PM-07_28_47

Theory : euclidean!plane!geometry


Home Index