Nuprl Lemma : oriented-plane-axioms
∀g:OrientedPlane. ∀P:OrientedPlane ⟶ ℙ.
  ((∀g:OrientedPlane. (BasicGeometryAxioms(g) 
⇒ geo-left-axioms(g) 
⇒ P[g])) 
⇒ P[g])
Proof
Definitions occuring in Statement : 
oriented-plane: OrientedPlane
, 
geo-left-axioms: geo-left-axioms(g)
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
oriented-plane: Error :oriented-plane, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-left-axioms_wf, 
Error :basic-geo-primitives_wf, 
Error :basic-geo-structure_wf, 
basic-geometry-_wf, 
subtype_rel_transitivity, 
Error :oriented-plane-subtype, 
basic-geometry--subtype, 
basic-geo-axioms_wf, 
Error :oriented-plane_wf, 
all_wf, 
sq_stable__geo-left-axioms-1, 
Error :o-geo-structure-subtype, 
sq_stable__geo-axioms
Rules used in proof : 
universeEquality, 
functionExtensionality, 
independent_isectElimination, 
functionEquality, 
cumulativity, 
lambdaEquality, 
isectElimination, 
instantiate, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
sqequalRule, 
applyEquality, 
productElimination, 
extract_by_obid, 
introduction, 
rename, 
setElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}g:OrientedPlane.  \mforall{}P:OrientedPlane  {}\mrightarrow{}  \mBbbP{}.
    ((\mforall{}g:OrientedPlane.  (BasicGeometryAxioms(g)  {}\mRightarrow{}  geo-left-axioms(g)  {}\mRightarrow{}  P[g]))  {}\mRightarrow{}  P[g])
Date html generated:
2017_10_02-PM-06_49_07
Last ObjectModification:
2017_08_06-PM-07_28_47
Theory : euclidean!plane!geometry
Home
Index