Nuprl Lemma : sq_stable__geo-left-axioms-1
∀g:EuclideanPlaneStructure
  (BasicGeometryAxioms(g) 
⇒ (∀a,b,c:Point.  (a # bc 
⇒ (¬Colinear(a;b;c)))) 
⇒ SqStable(geo-left-axioms(g)))
Proof
Definitions occuring in Statement : 
geo-left-axioms: geo-left-axioms(g)
, 
euclidean-plane-structure: EuclideanPlaneStructure
, 
geo-lsep: a # bc
, 
basic-geo-axioms: BasicGeometryAxioms(g)
, 
geo-colinear: Colinear(a;b;c)
, 
geo-point: Point
, 
sq_stable: SqStable(P)
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
geo-left-axioms: geo-left-axioms(g)
Lemmas referenced : 
euclidean-plane-structure_wf, 
basic-geo-axioms_wf, 
geo-colinear_wf, 
not_wf, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
geo-point_wf, 
all_wf, 
sq_stable__geo-left-1, 
sq_stable__geo-lsep, 
sq_stable__geo-sep, 
sq_stable__colinear, 
sq_stable__not, 
sq_stable__iff, 
sq_stable__all, 
geo-congruent_wf, 
geo-between_wf, 
geo-sep_wf, 
geo-left_wf, 
iff_wf, 
sq_stable__and
Rules used in proof : 
functionEquality, 
because_Cache, 
lambdaEquality, 
sqequalRule, 
applyEquality, 
isectElimination, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
hypothesis, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut, 
productEquality, 
isect_memberEquality
Latex:
\mforall{}g:EuclideanPlaneStructure
    (BasicGeometryAxioms(g)
    {}\mRightarrow{}  (\mforall{}a,b,c:Point.    (a  \#  bc  {}\mRightarrow{}  (\mneg{}Colinear(a;b;c))))
    {}\mRightarrow{}  SqStable(geo-left-axioms(g)))
Date html generated:
2017_10_02-PM-03_27_30
Last ObjectModification:
2017_08_07-PM-04_29_49
Theory : euclidean!plane!geometry
Home
Index