Nuprl Lemma : p6-aux-bet-preserves-angle

e:HeytingGeometry. ∀a,b,c,d:Point.  (a bc  (a_d_b ∧ a ≠ d)  cab ≅a cad)


Proof




Definitions occuring in Statement :  geo-triangle: bc heyting-geometry: HeytingGeometry geo-cong-angle: abc ≅a xyz geo-between: a_b_c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q geo-cong-angle: abc ≅a xyz member: t ∈ T heyting-geometry: HeytingGeometry exists: x:A. B[x] cand: c∧ B guard: {T} uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a prop:
Lemmas referenced :  extend-using-SC geo-triangle-property geo-between_wf euclidean-plane-structure-subtype euclidean-plane-subtype heyting-geometry-subtype subtype_rel_transitivity heyting-geometry_wf euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf geo-triangle_wf geo-point_wf geo-between-trivial geo-congruent-refl geo-congruent_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt sqequalHypSubstitution productElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality independent_functionElimination hypothesis rename because_Cache independent_pairFormation sqequalRule productIsType universeIsType isectElimination applyEquality instantiate independent_isectElimination inhabitedIsType dependent_pairFormation_alt

Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,d:Point.    (a  \#  bc  {}\mRightarrow{}  (a\_d\_b  \mwedge{}  a  \mneq{}  d)  {}\mRightarrow{}  cab  \mcong{}\msuba{}  cad)



Date html generated: 2019_10_16-PM-02_10_03
Last ObjectModification: 2018_11_07-PM-01_09_44

Theory : euclidean!plane!geometry


Home Index