Nuprl Lemma : p6-aux-bet-preserves-angle
∀e:HeytingGeometry. ∀a,b,c,d:Point.  (a # bc 
⇒ (a_d_b ∧ a ≠ d) 
⇒ cab ≅a cad)
Proof
Definitions occuring in Statement : 
geo-triangle: a # bc
, 
heyting-geometry: HeytingGeometry
, 
geo-cong-angle: abc ≅a xyz
, 
geo-between: a_b_c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
geo-cong-angle: abc ≅a xyz
, 
member: t ∈ T
, 
heyting-geometry: HeytingGeometry
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
Lemmas referenced : 
extend-using-SC, 
geo-triangle-property, 
geo-between_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
heyting-geometry-subtype, 
subtype_rel_transitivity, 
heyting-geometry_wf, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf, 
geo-triangle_wf, 
geo-point_wf, 
geo-between-trivial, 
geo-congruent-refl, 
geo-congruent_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
because_Cache, 
independent_pairFormation, 
sqequalRule, 
productIsType, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
inhabitedIsType, 
dependent_pairFormation_alt
Latex:
\mforall{}e:HeytingGeometry.  \mforall{}a,b,c,d:Point.    (a  \#  bc  {}\mRightarrow{}  (a\_d\_b  \mwedge{}  a  \mneq{}  d)  {}\mRightarrow{}  cab  \mcong{}\msuba{}  cad)
Date html generated:
2019_10_16-PM-02_10_03
Last ObjectModification:
2018_11_07-PM-01_09_44
Theory : euclidean!plane!geometry
Home
Index