Nuprl Lemma : pgeo-meet-psep-sym

g:ProjectivePlane. ∀l,m:Line. ∀a:Point. ∀s:l ≠ m. ∀s2:m ≠ l.  (l ∧ m ≠  m ∧ l ≠ a)


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-meet: l ∧ m pgeo-lsep: l ≠ m pgeo-psep: a ≠ b pgeo-line: Line pgeo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  uimplies: supposing a false: False not: ¬A pgeo-incident: b or: P ∨ Q guard: {T} prop: and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B projective-plane: ProjectivePlane member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  pgeo-line_wf pgeo-lsep_wf pgeo-primitives_wf projective-plane-structure_wf basic-projective-plane_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype basic-projective-plane-subtype projective-plane-structure_subtype pgeo-psep_wf pgeo-meet-incident pgeo-lsep-implies-plsep pgeo-incident_wf pgeo-point_wf pgeo-meet_wf pgeo-psep-or
Rules used in proof :  independent_isectElimination instantiate voidElimination productElimination unionElimination independent_functionElimination productEquality sqequalRule isectElimination setEquality lambdaEquality applyEquality hypothesis because_Cache rename setElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}l,m:Line.  \mforall{}a:Point.  \mforall{}s:l  \mneq{}  m.  \mforall{}s2:m  \mneq{}  l.    (l  \mwedge{}  m  \mneq{}  a  {}\mRightarrow{}  m  \mwedge{}  l  \mneq{}  a)



Date html generated: 2018_05_22-PM-00_46_47
Last ObjectModification: 2017_11_20-PM-03_10_51

Theory : euclidean!plane!geometry


Home Index