Nuprl Lemma : plsep-join-implies

g:ProjectivePlane. ∀p,q,r:Point. ∀s:p ≠ q.  (r ≠ p ∨  {q ≠ r ∧ p ≠ r})


Proof




Definitions occuring in Statement :  projective-plane: ProjectivePlane pgeo-join: p ∨ q pgeo-psep: a ≠ b pgeo-plsep: a ≠ b pgeo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} subtype_rel: A ⊆B and: P ∧ Q exists: x:A. B[x] member: t ∈ T implies:  Q all: x:A. B[x] cand: c∧ B pgeo-psep: a ≠ b false: False not: ¬A pgeo-leq: a ≡ b or: P ∨ Q
Lemmas referenced :  pgeo-point_wf pgeo-psep_wf pgeo-incident_wf pgeo-line_wf pgeo-join_wf pgeo-primitives_wf projective-plane-structure_wf projective-plane-structure-complete_wf projective-plane_wf subtype_rel_transitivity projective-plane-subtype projective-plane-structure-complete_subtype projective-plane-structure_subtype pgeo-plsep_wf projective-plane-subtype-basic pgeo-join-to-line-2 Join PL-sep-or
Rules used in proof :  productEquality setEquality rename setElimination lambdaEquality independent_isectElimination instantiate isectElimination independent_pairFormation sqequalRule applyEquality productElimination hypothesis independent_functionElimination hypothesisEquality because_Cache thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution dependent_pairFormation voidElimination unionElimination

Latex:
\mforall{}g:ProjectivePlane.  \mforall{}p,q,r:Point.  \mforall{}s:p  \mneq{}  q.    (r  \mneq{}  p  \mvee{}  q  {}\mRightarrow{}  \{q  \mneq{}  r  \mwedge{}  p  \mneq{}  r\})



Date html generated: 2018_05_22-PM-00_41_54
Last ObjectModification: 2017_11_28-PM-04_20_49

Theory : euclidean!plane!geometry


Home Index