Nuprl Lemma : segment-density-strict
∀e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃x:{Point| a-x-b})
Proof
Definitions occuring in Statement : 
euclidean-plane: EuclideanPlane
, 
geo-strict-between: a-b-c
, 
geo-sep: a ≠ b
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sq_exists: ∃x:{A| B[x]}
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
Euclid-Prop10, 
geo-strict-between_wf, 
set_wf, 
geo-point_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-sep_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
isectElimination, 
applyEquality, 
because_Cache, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
lambdaEquality
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}x:\{Point|  a-x-b\})
Date html generated:
2017_10_02-PM-06_55_25
Last ObjectModification:
2017_08_14-PM-03_40_31
Theory : euclidean!plane!geometry
Home
Index