Nuprl Lemma : segment-density-strict

e:EuclideanPlane. ∀a:Point. ∀b:{b:Point| a ≠ b} .  (∃x:{Point| a-x-b})


Proof




Definitions occuring in Statement :  euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-sep: a ≠ b geo-point: Point all: x:A. B[x] sq_exists: x:{A| B[x]} set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T sq_exists: x:{A| B[x]} and: P ∧ Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  Euclid-Prop10 geo-strict-between_wf set_wf geo-point_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-sep_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename dependent_set_memberEquality productElimination isectElimination applyEquality because_Cache sqequalRule instantiate independent_isectElimination lambdaEquality

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a:Point.  \mforall{}b:\{b:Point|  a  \mneq{}  b\}  .    (\mexists{}x:\{Point|  a-x-b\})



Date html generated: 2017_10_02-PM-06_55_25
Last ObjectModification: 2017_08_14-PM-03_40_31

Theory : euclidean!plane!geometry


Home Index