Nuprl Lemma : realspace_wf
realspace() ∈ Space
Proof
Definitions occuring in Statement : 
realspace: realspace()
, 
topspace: Space
, 
member: t ∈ T
Definitions unfolded in proof : 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
all: ∀x:A. B[x]
, 
req: x = y
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
realspace: realspace()
Lemmas referenced : 
equiv_rel_wf, 
subtype_rel_self, 
req-equiv, 
req_wf, 
real_wf, 
mktopspace_wf
Rules used in proof : 
because_Cache, 
applyEquality, 
instantiate, 
hypothesisEquality, 
lambdaEquality, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
realspace()  \mmember{}  Space
Date html generated:
2018_07_29-AM-09_49_12
Last ObjectModification:
2018_06_21-AM-10_47_36
Theory : inner!product!spaces
Home
Index