Nuprl Lemma : rv-orthogonal-implies-extensional-ext
∀rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv).  ∀x,y:Point(rv).  (f x # f y 
⇒ x # y) supposing Orthogonal(f)
Proof
Definitions occuring in Statement : 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
member: t ∈ T
, 
rv-orthogonal-implies-extensional, 
rv-isometry-implies-extensional, 
rv-sep-iff-ext, 
rv-norm-positive-iff-ext, 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda4, 
so_apply: x[s1;s2;s3;s4]
, 
top: Top
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
rv-orthogonal-implies-extensional, 
lifting-strict-spread, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
strict4-spread, 
rv-isometry-implies-extensional, 
rv-sep-iff-ext, 
rv-norm-positive-iff-ext
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueApply, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
applyExceptionCases, 
inrFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).
    \mforall{}x,y:Point(rv).    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Orthogonal(f)
Date html generated:
2020_05_20-PM-01_12_01
Last ObjectModification:
2020_05_01-AM-07_35_31
Theory : inner!product!spaces
Home
Index