Nuprl Lemma : rv-orthogonal-implies-extensional-ext

rv:InnerProductSpace. ∀f:Point(rv) ⟶ Point(rv).  ∀x,y:Point(rv).  (f  y) supposing Orthogonal(f)


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace uimplies: supposing a all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  member: t ∈ T rv-orthogonal-implies-extensional rv-isometry-implies-extensional rv-sep-iff-ext rv-norm-positive-iff-ext uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] top: Top uimplies: supposing a strict4: strict4(F) and: P ∧ Q all: x:A. B[x] implies:  Q has-value: (a)↓ prop: guard: {T} or: P ∨ Q squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  rv-orthogonal-implies-extensional lifting-strict-spread has-value_wf_base base_wf is-exception_wf strict4-spread rv-isometry-implies-extensional rv-sep-iff-ext rv-norm-positive-iff-ext
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination independent_pairFormation lambdaFormation callbyvalueApply baseApply closedConclusion hypothesisEquality applyExceptionCases inrFormation imageMemberEquality imageElimination exceptionSqequal inlFormation equalityTransitivity equalitySymmetry

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point(rv)  {}\mrightarrow{}  Point(rv).
    \mforall{}x,y:Point(rv).    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Orthogonal(f)



Date html generated: 2020_05_20-PM-01_12_01
Last ObjectModification: 2020_05_01-AM-07_35_31

Theory : inner!product!spaces


Home Index