Nuprl Lemma : rv-orthogonal-implies-extensional

rv:InnerProductSpace. ∀f:Point ⟶ Point.  ∀x,y:Point.  (f  y) supposing Orthogonal(f)


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uimplies: supposing a all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  prop: guard: {T} subtype_rel: A ⊆B uall: [x:A]. B[x] false: False implies:  Q not: ¬A ss-eq: x ≡ y and: P ∧ Q rv-orthogonal: Orthogonal(f) uimplies: supposing a member: t ∈ T all: x:A. B[x]
Lemmas referenced :  rv-orthogonal_wf rv-orthogonal-isometry real_wf rv-mul_wf rv-ip_wf req_witness rv-add_wf ss-point_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf rv-isometry-implies-extensional
Rules used in proof :  functionEquality rename independent_functionElimination because_Cache functionExtensionality independent_isectElimination instantiate applyEquality isectElimination voidElimination lambdaEquality independent_pairEquality productElimination sqequalRule isect_memberFormation hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution hypothesis lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}f:Point  {}\mrightarrow{}  Point.    \mforall{}x,y:Point.    (f  x  \#  f  y  {}\mRightarrow{}  x  \#  y)  supposing  Orthogonal(f)



Date html generated: 2016_11_08-AM-09_18_31
Last ObjectModification: 2016_11_02-PM-08_46_27

Theory : inner!product!spaces


Home Index