Nuprl Lemma : fl-vertex_wf

[T:Type]. ∀[eq:EqDecider(T)]. ∀[u:T T].  (fl-vertex(u) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  fl-vertex: fl-vertex(u) face-lattice: face-lattice(T;eq) lattice-point: Point(l) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fl-vertex: fl-vertex(u) face-lattice0: (x=0) face-lattice1: (x=1)
Lemmas referenced :  deq_wf face-lattice1_wf face-lattice0_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut unionElimination thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry unionEquality isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[u:T  +  T].    (fl-vertex(u)  \mmember{}  Point(face-lattice(T;eq)))



Date html generated: 2016_05_18-AM-11_39_37
Last ObjectModification: 2016_01_19-PM-05_18_44

Theory : lattices


Home Index