Nuprl Lemma : neg-bfs-append

[S:Type]. ∀[K:RngSig]. ∀[fs1,fs2:basic-formal-sum(K;S)].  (-(fs1 fs2) (-(fs1) -(fs2)) ∈ basic-formal-sum(K;S))


Proof




Definitions occuring in Statement :  neg-bfs: -(fs) basic-formal-sum: basic-formal-sum(K;S) uall: [x:A]. B[x] universe: Type equal: t ∈ T rng_sig: RngSig bag-append: as bs
Definitions unfolded in proof :  top: Top uimplies: supposing a subtype_rel: A ⊆B basic-formal-sum: basic-formal-sum(K;S) neg-bfs: -(fs) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_sig_wf basic-formal-sum_wf bag_wf rng_minus_wf bag-map_wf bag-append_wf rng_car_wf top_wf subtype_rel_bag bag-map-append
Rules used in proof :  universeEquality axiomEquality independent_pairEquality productElimination because_Cache voidEquality voidElimination isect_memberEquality lambdaEquality independent_isectElimination cumulativity productEquality hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[fs1,fs2:basic-formal-sum(K;S)].    (-(fs1  +  fs2)  =  (-(fs1)  +  -(fs2)))



Date html generated: 2018_05_22-PM-09_47_04
Last ObjectModification: 2018_01_08-AM-11_47_14

Theory : linear!algebra


Home Index