Nuprl Lemma : neg-bfs-append
∀[S:Type]. ∀[K:RngSig]. ∀[fs1,fs2:basic-formal-sum(K;S)].  (-(fs1 + fs2) = (-(fs1) + -(fs2)) ∈ basic-formal-sum(K;S))
Proof
Definitions occuring in Statement : 
neg-bfs: -(fs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng_sig: RngSig
, 
bag-append: as + bs
Definitions unfolded in proof : 
top: Top
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
neg-bfs: -(fs)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_sig_wf, 
basic-formal-sum_wf, 
bag_wf, 
rng_minus_wf, 
bag-map_wf, 
bag-append_wf, 
rng_car_wf, 
top_wf, 
subtype_rel_bag, 
bag-map-append
Rules used in proof : 
universeEquality, 
axiomEquality, 
independent_pairEquality, 
productElimination, 
because_Cache, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
lambdaEquality, 
independent_isectElimination, 
cumulativity, 
productEquality, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[S:Type].  \mforall{}[K:RngSig].  \mforall{}[fs1,fs2:basic-formal-sum(K;S)].    (-(fs1  +  fs2)  =  (-(fs1)  +  -(fs2)))
Date html generated:
2018_05_22-PM-09_47_04
Last ObjectModification:
2018_01_08-AM-11_47_14
Theory : linear!algebra
Home
Index