Nuprl Lemma : subtype-vs-quotient
∀[K:CRng]. ∀[vs:VectorSpace(K)]. ∀[P:Point(vs) ⟶ ℙ].  Point(vs) ⊆r Point(vs//z.P[z]) supposing vs-subspace(K;vs;z.P[z])
Proof
Definitions occuring in Statement : 
vs-quotient: vs//z.P[z]
, 
vs-subspace: vs-subspace(K;vs;x.P[x])
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
crng: CRng
Definitions unfolded in proof : 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
rng: Rng
, 
crng: CRng
, 
btrue: tt
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
mk-vs: mk-vs, 
vs-point: Point(vs)
, 
vs-quotient: vs//z.P[z]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
crng_wf, 
vector-space_wf, 
vs-subspace_wf, 
eq-mod-subspace-equiv, 
eq-mod-subspace_wf, 
vs-point_wf, 
subtype_quotient, 
rec_select_update_lemma
Rules used in proof : 
universeEquality, 
cumulativity, 
functionEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
independent_functionElimination, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
lambdaEquality, 
hypothesisEquality, 
rename, 
setElimination, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[K:CRng].  \mforall{}[vs:VectorSpace(K)].  \mforall{}[P:Point(vs)  {}\mrightarrow{}  \mBbbP{}].
    Point(vs)  \msubseteq{}r  Point(vs//z.P[z])  supposing  vs-subspace(K;vs;z.P[z])
Date html generated:
2018_05_22-PM-09_44_07
Last ObjectModification:
2018_01_09-PM-04_25_35
Theory : linear!algebra
Home
Index