Nuprl Lemma : psc_map_subtype3
∀[C:SmallCategory]. ∀[X,Y,Z,U:ps_context{j:l}(C)].
  (psc_map{j:l}(C; X; Z) ⊆r psc_map{j:l}(C; Y; U)) supposing 
     (sub_ps_context{j:l}(C; Y; X) and 
     sub_ps_context{j:l}(C; Z; U))
Proof
Definitions occuring in Statement : 
sub_ps_context: Y ⊆ X
, 
psc_map: A ⟶ B
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_rel_transitivity, 
psc_map_wf, 
psc_map_subtype, 
psc_map_subtype2, 
sub_ps_context_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
independent_isectElimination, 
axiomEquality, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X,Y,Z,U:ps\_context\{j:l\}(C)].
    (psc\_map\{j:l\}(C;  X;  Z)  \msubseteq{}r  psc\_map\{j:l\}(C;  Y;  U))  supposing 
          (sub\_ps\_context\{j:l\}(C;  Y;  X)  and 
          sub\_ps\_context\{j:l\}(C;  Z;  U))
Date html generated:
2020_05_20-PM-01_25_09
Last ObjectModification:
2020_04_01-PM-00_01_27
Theory : presheaf!models!of!type!theory
Home
Index