Nuprl Lemma : std-simplex-void
∀[n:ℤ]. ¬Δ(n) supposing n < 0
Proof
Definitions occuring in Statement : 
std-simplex: Δ(n)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
std-simplex: Δ(n)
, 
and: P ∧ Q
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
true: True
Lemmas referenced : 
std-simplex_wf, 
istype-less_than, 
istype-int, 
rsum-empty, 
istype-void, 
req-int, 
subtype_base_sq, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
thin, 
sqequalHypSubstitution, 
setElimination, 
rename, 
productElimination, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
voidElimination, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
inhabitedIsType, 
natural_numberEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
independent_isectElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n:\mBbbZ{}].  \mneg{}\mDelta{}(n)  supposing  n  <  0
Date html generated:
2019_10_30-AM-11_30_29
Last ObjectModification:
2019_07_31-PM-02_48_41
Theory : real!vectors
Home
Index