Step
*
1
1
1
1
1
of Lemma
approx-zero
1. I : {I:Interval| icompact(I)}
2. n : ℕ
3. f : {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
4. e : {e:ℝ| r0 < e}
5. λx.|f x| ∈ {f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))}
6. e1 : {e:ℝ| r0 < e}
7. e1 < (infn(n;I) (λx.|f x|))
8. x : I^n
9. (infn(n;I) (λx.|f x|)) ≤ ((λx.|f x|) x)
⊢ r0 < |f x|
BY
{ (Reduce -1 THEN (Assert r0 < e1 BY Auto) THEN Auto) }
Latex:
Latex:
1. I : \{I:Interval| icompact(I)\}
2. n : \mBbbN{}
3. f : \{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
4. e : \{e:\mBbbR{}| r0 < e\}
5. \mlambda{}x.|f x| \mmember{} \{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\}
6. e1 : \{e:\mBbbR{}| r0 < e\}
7. e1 < (infn(n;I) (\mlambda{}x.|f x|))
8. x : I\^{}n
9. (infn(n;I) (\mlambda{}x.|f x|)) \mleq{} ((\mlambda{}x.|f x|) x)
\mvdash{} r0 < |f x|
By
Latex:
(Reduce -1 THEN (Assert r0 < e1 BY Auto) THEN Auto)
Home
Index