Nuprl Lemma : approx-zero
∀I:{I:Interval| icompact(I)} . ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b) 
⇒ ((f a) = (f b)))} .
  ((¬(∀x:I^n. f x ≠ r0)) 
⇒ (∀e:{e:ℝ| r0 < e} . ∃x:I^n. (|f x| < e)))
Proof
Definitions occuring in Statement : 
interval-vec: I^n
, 
req-vec: req-vec(n;x;y)
, 
icompact: icompact(I)
, 
interval: Interval
, 
rneq: x ≠ y
, 
rless: x < y
, 
rabs: |x|
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
prop: ℙ
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
false: False
, 
interval-vec: I^n
, 
sq_stable: SqStable(P)
, 
rdiv: (x/y)
, 
uiff: uiff(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
rless_wf, 
rmul_preserves_rless, 
rless_transitivity2, 
rabs_wf, 
real_wf, 
rneq_wf, 
istype-void, 
interval-vec_wf, 
req-vec_wf, 
req_wf, 
istype-nat, 
interval_wf, 
icompact_wf, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
rinv_wf2, 
itermVar_wf, 
sq_stable__rless, 
radd-preserves-rless, 
rminus_wf, 
radd_wf, 
itermAdd_wf, 
itermMinus_wf, 
rless_functionality, 
req_transitivity, 
rmul-rinv3, 
req-iff-rsub-is-0, 
real_polynomial_null, 
istype-int, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
rabs_functionality, 
rleq_antisymmetry, 
infn_wf, 
rleq-iff-all-rless, 
rleq_functionality, 
req_weakening, 
not-rless, 
rneq-iff-rabs, 
rsub_wf, 
infn-rleq, 
rleq_weakening_rless, 
rless_transitivity1, 
infn-nonneg, 
zero-rleq-rabs, 
infn-property, 
rleq_wf, 
rleq-implies-rleq, 
radd_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
dependent_set_memberEquality_alt, 
introduction, 
extract_by_obid, 
isectElimination, 
setElimination, 
rename, 
because_Cache, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
sqequalRule, 
inrFormation_alt, 
productElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
universeIsType, 
dependent_pairFormation_alt, 
applyEquality, 
setIsType, 
functionIsType, 
imageElimination, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
int_eqEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType
Latex:
\mforall{}I:\{I:Interval|  icompact(I)\}  .  \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}\000C  .
    ((\mneg{}(\mforall{}x:I\^{}n.  f  x  \mneq{}  r0))  {}\mRightarrow{}  (\mforall{}e:\{e:\mBbbR{}|  r0  <  e\}  .  \mexists{}x:I\^{}n.  (|f  x|  <  e)))
Date html generated:
2019_10_30-AM-08_26_48
Last ObjectModification:
2019_05_29-AM-09_07_48
Theory : reals
Home
Index