Nuprl Lemma : bounded-sequence_wf

[x:ℕ ⟶ ℝ]. (bounded-sequence(n.x[n]) ∈ ℙ)


Proof




Definitions occuring in Statement :  bounded-sequence: bounded-sequence(n.x[n]) real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bounded-sequence: bounded-sequence(n.x[n]) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf real_wf all_wf nat_wf rleq_wf rabs_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality applyEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (bounded-sequence(n.x[n])  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_37_06
Last ObjectModification: 2015_12_28-AM-00_57_11

Theory : reals


Home Index