Nuprl Lemma : closed-rational-interval_wf
∀[a:ℤ]. ∀[b:ℤ-o]. ∀[c:ℤ]. ∀[d:ℤ-o].  (closed-rational-interval(a;b;c;d) ∈ Interval)
Proof
Definitions occuring in Statement : 
closed-rational-interval: closed-rational-interval(a;b;c;d), 
interval: Interval, 
int_nzero: ℤ-o, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
closed-rational-interval: closed-rational-interval(a;b;c;d)
Lemmas referenced : 
rccint_wf, 
rat-to-real_wf, 
int_nzero_wf, 
istype-int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
universeIsType
Latex:
\mforall{}[a:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].  \mforall{}[c:\mBbbZ{}].  \mforall{}[d:\mBbbZ{}\msupminus{}\msupzero{}].    (closed-rational-interval(a;b;c;d)  \mmember{}  Interval)
 Date html generated: 
2019_10_29-AM-10_46_00
 Last ObjectModification: 
2019_10_16-AM-09_12_08
Theory : reals
Home
Index