Nuprl Lemma : compact-sup_wf

[X:Type]. ∀d:metric(X). ∀c:mcompact(X;d). ∀f:FUN(X ⟶ ℝ).  (compact-sup{i:l}(d;c;f) ∈ ℝ)


Proof




Definitions occuring in Statement :  compact-sup: compact-sup{i:l}(d;c;f) mcompact: mcompact(X;d) mfun: FUN(X ⟶ Y) rmetric: rmetric() metric: metric(X) real: uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  mfun: FUN(X ⟶ Y) pi2: snd(t) mcompact: mcompact(X;d) compact-sup: compact-sup{i:l}(d;c;f) all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf mcompact_wf rmetric_wf real_wf mfun_wf compact-mc_wf m-sup_wf
Rules used in proof :  universeEquality instantiate inhabitedIsType functionIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality lambdaEquality_alt universeIsType dependent_functionElimination because_Cache hypothesis rename setElimination productElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule lambdaFormation_alt cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}c:mcompact(X;d).  \mforall{}f:FUN(X  {}\mrightarrow{}  \mBbbR{}).    (compact-sup\{i:l\}(d;c;f)  \mmember{}  \mBbbR{})



Date html generated: 2019_10_30-AM-07_08_06
Last ObjectModification: 2019_10_25-PM-02_31_12

Theory : reals


Home Index