Nuprl Lemma : converges-to-cauchy-mlimit
∀[X:Type]
  ∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀x:ℕ ⟶ X. ∀c:mcauchy(d;n.x n).  lim n→∞.x n = cauchy-mlimit(cmplt;x;c)
Proof
Definitions occuring in Statement : 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c), 
mcomplete: mcomplete(M), 
mconverges-to: lim n→∞.x[n] = y, 
mcauchy: mcauchy(d;n.x[n]), 
mk-metric-space: X with d, 
metric: metric(X), 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
cauchy-mlimit: cauchy-mlimit(cmplt;x;c), 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
metric: metric(X), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
uimplies: b supposing a, 
implies: P ⇒ Q, 
mconverges: x[n]↓ as n→∞, 
exists: ∃x:A. B[x], 
pi1: fst(t)
Lemmas referenced : 
nat_wf, 
subtype_rel_function, 
mcauchy_wf, 
istype-nat, 
mconverges_wf, 
subtype_rel_self, 
mcomplete_wf, 
mk-metric-space_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
sqequalRule, 
cut, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
functionEquality, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
thin, 
setElimination, 
rename, 
lambdaEquality_alt, 
because_Cache, 
independent_isectElimination, 
inhabitedIsType, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  \mforall{}cmplt:mcomplete(X  with  d).  \mforall{}x:\mBbbN{}  {}\mrightarrow{}  X.  \mforall{}c:mcauchy(d;n.x  n).
        lim  n\mrightarrow{}\minfty{}.x  n  =  cauchy-mlimit(cmplt;x;c)
 Date html generated: 
2019_10_30-AM-06_43_11
 Last ObjectModification: 
2019_10_02-AM-10_55_37
Theory : reals
Home
Index