Nuprl Lemma : converges-to-cauchy-mlimit
∀[X:Type]
∀d:metric(X). ∀cmplt:mcomplete(X with d). ∀x:ℕ ⟶ X. ∀c:mcauchy(d;n.x n). lim n→∞.x n = cauchy-mlimit(cmplt;x;c)
Proof
Definitions occuring in Statement :
cauchy-mlimit: cauchy-mlimit(cmplt;x;c)
,
mcomplete: mcomplete(M)
,
mconverges-to: lim n→∞.x[n] = y
,
mcauchy: mcauchy(d;n.x[n])
,
mk-metric-space: X with d
,
metric: metric(X)
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
mcomplete: mcomplete(M)
,
mk-metric-space: X with d
,
cauchy-mlimit: cauchy-mlimit(cmplt;x;c)
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
metric: metric(X)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
mconverges: x[n]↓ as n→∞
,
exists: ∃x:A. B[x]
,
pi1: fst(t)
Lemmas referenced :
nat_wf,
subtype_rel_function,
mcauchy_wf,
istype-nat,
mconverges_wf,
subtype_rel_self,
mcomplete_wf,
mk-metric-space_wf,
metric_wf,
istype-universe
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
lambdaFormation_alt,
sqequalHypSubstitution,
sqequalRule,
cut,
applyEquality,
functionExtensionality,
hypothesisEquality,
functionEquality,
introduction,
extract_by_obid,
hypothesis,
isectElimination,
thin,
setElimination,
rename,
lambdaEquality_alt,
because_Cache,
independent_isectElimination,
inhabitedIsType,
productElimination,
equalityIstype,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
universeIsType,
functionIsType,
instantiate,
universeEquality
Latex:
\mforall{}[X:Type]
\mforall{}d:metric(X). \mforall{}cmplt:mcomplete(X with d). \mforall{}x:\mBbbN{} {}\mrightarrow{} X. \mforall{}c:mcauchy(d;n.x n).
lim n\mrightarrow{}\minfty{}.x n = cauchy-mlimit(cmplt;x;c)
Date html generated:
2019_10_30-AM-06_43_11
Last ObjectModification:
2019_10_02-AM-10_55_37
Theory : reals
Home
Index