Nuprl Lemma : converges-to-infinity_wf

[x:ℕ ⟶ ℝ]. (lim n →∞.x[n] = ∞ ∈ ℙ)


Proof




Definitions occuring in Statement :  converges-to-infinity: lim n →∞.x[n] = ∞ real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  converges-to-infinity: lim n →∞.x[n] = ∞ uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat_plus: + so_apply: x[s]
Lemmas referenced :  all_wf nat_plus_wf all-large_wf rleq_wf int-to-real_wf nat_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality setElimination rename hypothesisEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (lim  n  \mrightarrow{}\minfty{}.x[n]  =  \minfty{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_39_53
Last ObjectModification: 2015_12_28-AM-00_58_47

Theory : reals


Home Index