Nuprl Lemma : decidable__i-closed
∀I:Interval. Dec(i-closed(I))
Proof
Definitions occuring in Statement : 
i-closed: i-closed(I)
, 
interval: Interval
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-closed: i-closed(I)
, 
member: t ∈ T
, 
isl: isl(x)
, 
outl: outl(x)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bor: p ∨bq
, 
bfalse: ff
, 
uall: ∀[x:A]. B[x]
, 
assert: ↑b
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
interval_wf, 
assert_wf, 
isl_wf, 
real_wf, 
true_wf, 
btrue_wf, 
decidable__cand, 
decidable__assert
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
hypothesis, 
unionElimination, 
isectElimination, 
hypothesisEquality, 
isect_memberEquality, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}I:Interval.  Dec(i-closed(I))
Date html generated:
2016_05_18-AM-08_18_56
Last ObjectModification:
2015_12_27-PM-11_57_11
Theory : reals
Home
Index