Nuprl Lemma : decidable__i-closed

I:Interval. Dec(i-closed(I))


Proof




Definitions occuring in Statement :  i-closed: i-closed(I) interval: Interval decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval i-closed: i-closed(I) member: t ∈ T isl: isl(x) outl: outl(x) bnot: ¬bb ifthenelse: if then else fi  btrue: tt bor: p ∨bq bfalse: ff uall: [x:A]. B[x] assert: b prop: implies:  Q and: P ∧ Q cand: c∧ B
Lemmas referenced :  interval_wf assert_wf isl_wf real_wf true_wf btrue_wf decidable__cand decidable__assert
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut lemma_by_obid hypothesis unionElimination isectElimination hypothesisEquality isect_memberEquality because_Cache independent_functionElimination dependent_functionElimination

Latex:
\mforall{}I:Interval.  Dec(i-closed(I))



Date html generated: 2016_05_18-AM-08_18_56
Last ObjectModification: 2015_12_27-PM-11_57_11

Theory : reals


Home Index