Nuprl Lemma : fun-not-int

[f:ℕ+ ⟶ ℤ]. (isint(f) ff)


Proof




Definitions occuring in Statement :  nat_plus: + bfalse: ff btrue: tt uall: [x:A]. B[x] isint: isint def function: x:A ⟶ B[x] int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} exists: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop:
Lemmas referenced :  bfalse_wf value-type_wf int-value-type less_than_wf nat_plus_wf function-not-int bool_subtype_base subtype_base_sq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate lemma_by_obid sqequalHypSubstitution isectElimination because_Cache independent_isectElimination hypothesis sqequalRule lambdaEquality intEquality hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom functionEquality dependent_pairFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality baseClosed

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  (isint(f)  \msim{}  ff)



Date html generated: 2016_05_18-AM-06_47_54
Last ObjectModification: 2016_01_17-AM-01_45_10

Theory : reals


Home Index