Nuprl Lemma : fun-not-int
∀[f:ℕ+ ⟶ ℤ]. (isint(f) ~ ff)
Proof
Definitions occuring in Statement : 
nat_plus: ℕ+
, 
bfalse: ff
, 
btrue: tt
, 
uall: ∀[x:A]. B[x]
, 
isint: isint def, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
bfalse_wf, 
value-type_wf, 
int-value-type, 
less_than_wf, 
nat_plus_wf, 
function-not-int, 
bool_subtype_base, 
subtype_base_sq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
intEquality, 
hypothesisEquality, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
functionEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].  (isint(f)  \msim{}  ff)
Date html generated:
2016_05_18-AM-06_47_54
Last ObjectModification:
2016_01_17-AM-01_45_10
Theory : reals
Home
Index