Nuprl Lemma : function-not-int

[A:Type]. ∀[B:A ⟶ Type].  ∀[f:a:A ⟶ B[a]]. (isint(f) ff) supposing ↓∃a:A. value-type(B[a])


Proof




Definitions occuring in Statement :  value-type: value-type(T) bfalse: ff btrue: tt uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] isint: isint def exists: x:A. B[x] squash: T function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  so_lambda: λ2x.t[x] prop: guard: {T} implies:  Q all: x:A. B[x] sq_type: SQType(T) has-value: (a)↓ so_apply: x[s] exists: x:A. B[x] squash: T uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] or: P ∨ Q top: Top false: False not: ¬A
Lemmas referenced :  value-type_wf exists_wf squash_wf bottom_diverge value-type-has-value bool_subtype_base bool_wf subtype_base_sq bfalse_wf has-value-implies-dec-isint bottom-sqle equal_wf equal-wf-base
Rules used in proof :  universeEquality lambdaEquality because_Cache isect_memberEquality sqequalRule functionEquality axiomSqEquality independent_functionElimination equalitySymmetry equalityTransitivity dependent_functionElimination callbyvalueApply hypothesisEquality applyEquality productElimination imageElimination independent_isectElimination hypothesis cumulativity isectElimination sqequalHypSubstitution extract_by_obid instantiate thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution pointwiseFunctionality unionElimination baseClosed voidEquality voidElimination sqequalSqle applyInt lambdaFormation

Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}[f:a:A  {}\mrightarrow{}  B[a]].  (isint(f)  \msim{}  ff)  supposing  \mdownarrow{}\mexists{}a:A.  value-type(B[a])



Date html generated: 2019_06_20-AM-11_21_35
Last ObjectModification: 2018_10_16-PM-02_56_26

Theory : call!by!value_1


Home Index