Nuprl Lemma : function-not-int
∀[A:Type]. ∀[B:A ⟶ Type].  ∀[f:a:A ⟶ B[a]]. (isint(f) ~ ff) supposing ↓∃a:A. value-type(B[a])
Proof
Definitions occuring in Statement : 
value-type: value-type(T)
, 
bfalse: ff
, 
btrue: tt
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
isint: isint def, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_type: SQType(T)
, 
has-value: (a)↓
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
or: P ∨ Q
, 
top: Top
, 
false: False
, 
not: ¬A
Lemmas referenced : 
value-type_wf, 
exists_wf, 
squash_wf, 
bottom_diverge, 
value-type-has-value, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bfalse_wf, 
has-value-implies-dec-isint, 
bottom-sqle, 
equal_wf, 
equal-wf-base
Rules used in proof : 
universeEquality, 
lambdaEquality, 
because_Cache, 
isect_memberEquality, 
sqequalRule, 
functionEquality, 
axiomSqEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
callbyvalueApply, 
hypothesisEquality, 
applyEquality, 
productElimination, 
imageElimination, 
independent_isectElimination, 
hypothesis, 
cumulativity, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
instantiate, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
pointwiseFunctionality, 
unionElimination, 
baseClosed, 
voidEquality, 
voidElimination, 
sqequalSqle, 
applyInt, 
lambdaFormation
Latex:
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].    \mforall{}[f:a:A  {}\mrightarrow{}  B[a]].  (isint(f)  \msim{}  ff)  supposing  \mdownarrow{}\mexists{}a:A.  value-type(B[a])
Date html generated:
2019_06_20-AM-11_21_35
Last ObjectModification:
2018_10_16-PM-02_56_26
Theory : call!by!value_1
Home
Index