Nuprl Lemma : i-type-member
∀I:Interval. ∀p:i-type(I).  (real(p) ∈ I)
Proof
Definitions occuring in Statement : 
i-real: real(p)
, 
i-type: i-type(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
i-type: i-type(I)
, 
i-real: real(p)
, 
pi2: snd(t)
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
Lemmas referenced : 
interval_wf, 
i-type_wf, 
i-member_wf, 
i-approx_wf, 
sq_stable__i-member, 
i-member-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_pairFormation, 
isectElimination, 
hypothesis, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}I:Interval.  \mforall{}p:i-type(I).    (real(p)  \mmember{}  I)
Date html generated:
2016_05_18-AM-08_48_52
Last ObjectModification:
2016_01_17-AM-02_25_46
Theory : reals
Home
Index