Nuprl Lemma : i-type-member

I:Interval. ∀p:i-type(I).  (real(p) ∈ I)


Proof




Definitions occuring in Statement :  i-real: real(p) i-type: i-type(I) i-member: r ∈ I interval: Interval all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] i-type: i-type(I) i-real: real(p) pi2: snd(t) member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q exists: x:A. B[x] uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T prop:
Lemmas referenced :  interval_wf i-type_wf i-member_wf i-approx_wf sq_stable__i-member i-member-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut lemma_by_obid dependent_functionElimination hypothesisEquality setElimination rename independent_functionElimination dependent_pairFormation isectElimination hypothesis introduction imageMemberEquality baseClosed imageElimination

Latex:
\mforall{}I:Interval.  \mforall{}p:i-type(I).    (real(p)  \mmember{}  I)



Date html generated: 2016_05_18-AM-08_48_52
Last ObjectModification: 2016_01_17-AM-02_25_46

Theory : reals


Home Index