Nuprl Lemma : i-type-member
∀I:Interval. ∀p:i-type(I).  (real(p) ∈ I)
Proof
Definitions occuring in Statement : 
i-real: real(p), 
i-type: i-type(I), 
i-member: r ∈ I, 
interval: Interval, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
i-type: i-type(I), 
i-real: real(p), 
pi2: snd(t), 
member: t ∈ T, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
sq_stable: SqStable(P), 
squash: ↓T, 
prop: ℙ
Lemmas referenced : 
interval_wf, 
i-type_wf, 
i-member_wf, 
i-approx_wf, 
sq_stable__i-member, 
i-member-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
setElimination, 
rename, 
independent_functionElimination, 
dependent_pairFormation, 
isectElimination, 
hypothesis, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}I:Interval.  \mforall{}p:i-type(I).    (real(p)  \mmember{}  I)
 Date html generated: 
2016_05_18-AM-08_48_52
 Last ObjectModification: 
2016_01_17-AM-02_25_46
Theory : reals
Home
Index