Nuprl Lemma : i-type_wf
∀[I:Interval]. (i-type(I) ∈ Type)
Proof
Definitions occuring in Statement : 
i-type: i-type(I)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
i-type: i-type(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
nat_plus_wf, 
real_wf, 
i-member_wf, 
i-approx_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
lemma_by_obid, 
hypothesis, 
setEquality, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  (i-type(I)  \mmember{}  Type)
Date html generated:
2016_05_18-AM-08_44_27
Last ObjectModification:
2015_12_27-PM-11_49_22
Theory : reals
Home
Index