Nuprl Lemma : i-type_wf
∀[I:Interval]. (i-type(I) ∈ Type)
Proof
Definitions occuring in Statement :
i-type: i-type(I)
,
interval: Interval
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
universe: Type
Definitions unfolded in proof :
i-type: i-type(I)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
prop: ℙ
Lemmas referenced :
nat_plus_wf,
real_wf,
i-member_wf,
i-approx_wf,
interval_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
productEquality,
lemma_by_obid,
hypothesis,
setEquality,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[I:Interval]. (i-type(I) \mmember{} Type)
Date html generated:
2016_05_18-AM-08_44_27
Last ObjectModification:
2015_12_27-PM-11_49_22
Theory : reals
Home
Index