Step
*
2
1
1
2
1
of Lemma
least-upper-bound
1. [A] : {A:ℝ ⟶ ℙ| ∀x,y:ℝ. ((x = y)
⇒ (A x)
⇒ (A y))}
2. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((A a) ∧ (x < a))) ∨ A ≤ y))
3. a : ℝ
4. b : ℝ
5. A a
6. A < b
7. a ≤ b
⊢ ∃a',b':ℝ. ((A a') ∧ A < b' ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * (r(2)/r(3)))))
BY
{ Assert ⌜∃a',b':ℝ
(((a' < b') ∧ (a < a') ∧ (b' < b))
∧ ((b - a') = ((b - a) * (r(2)/r(3))))
∧ ((b' - a) = ((b - a) * (r(2)/r(3)))))⌝⋅ }
1
.....assertion.....
1. [A] : {A:ℝ ⟶ ℙ| ∀x,y:ℝ. ((x = y)
⇒ (A x)
⇒ (A y))}
2. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((A a) ∧ (x < a))) ∨ A ≤ y))
3. a : ℝ
4. b : ℝ
5. A a
6. A < b
7. a ≤ b
⊢ ∃a',b':ℝ
(((a' < b') ∧ (a < a') ∧ (b' < b)) ∧ ((b - a') = ((b - a) * (r(2)/r(3)))) ∧ ((b' - a) = ((b - a) * (r(2)/r(3)))))
2
1. [A] : {A:ℝ ⟶ ℙ| ∀x,y:ℝ. ((x = y)
⇒ (A x)
⇒ (A y))}
2. ∀x,y:ℝ. ((x < y)
⇒ ((∃a:ℝ. ((A a) ∧ (x < a))) ∨ A ≤ y))
3. a : ℝ
4. b : ℝ
5. A a
6. A < b
7. a ≤ b
8. ∃a',b':ℝ
(((a' < b') ∧ (a < a') ∧ (b' < b)) ∧ ((b - a') = ((b - a) * (r(2)/r(3)))) ∧ ((b' - a) = ((b - a) * (r(2)/r(3)))))
⊢ ∃a',b':ℝ. ((A a') ∧ A < b' ∧ (a ≤ a') ∧ (a' ≤ b') ∧ (b' ≤ b) ∧ ((b' - a') ≤ ((b - a) * (r(2)/r(3)))))
Latex:
Latex:
1. [A] : \{A:\mBbbR{} {}\mrightarrow{} \mBbbP{}| \mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (A x) {}\mRightarrow{} (A y))\}
2. \mforall{}x,y:\mBbbR{}. ((x < y) {}\mRightarrow{} ((\mexists{}a:\mBbbR{}. ((A a) \mwedge{} (x < a))) \mvee{} A \mleq{} y))
3. a : \mBbbR{}
4. b : \mBbbR{}
5. A a
6. A < b
7. a \mleq{} b
\mvdash{} \mexists{}a',b':\mBbbR{}
((A a') \mwedge{} A < b' \mwedge{} (a \mleq{} a') \mwedge{} (a' \mleq{} b') \mwedge{} (b' \mleq{} b) \mwedge{} ((b' - a') \mleq{} ((b - a) * (r(2)/r(3)))))
By
Latex:
Assert \mkleeneopen{}\mexists{}a',b':\mBbbR{}
(((a' < b') \mwedge{} (a < a') \mwedge{} (b' < b))
\mwedge{} ((b - a') = ((b - a) * (r(2)/r(3))))
\mwedge{} ((b' - a) = ((b - a) * (r(2)/r(3)))))\mkleeneclose{}\mcdot{}
Home
Index