Nuprl Lemma : mcompact-interval
∀a,b:ℝ.  mcompact({x:ℝ| x ∈ [a, b]} rmetric()) supposing a ≤ b
Proof
Definitions occuring in Statement : 
mcompact: mcompact(X;d)
, 
rmetric: rmetric()
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
real: ℝ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
prop: ℙ
, 
mcompact: mcompact(X;d)
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uall: ∀[x:A]. B[x]
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
Lemmas referenced : 
real_wf, 
rleq_wf, 
real-interval-m-TB, 
real-interval-complete, 
le_witness_for_triv
Rules used in proof : 
universeIsType, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
rename, 
inhabitedIsType, 
functionIsTypeImplies, 
independent_isectElimination, 
equalitySymmetry, 
hypothesis, 
equalityTransitivity, 
productElimination, 
isectElimination, 
extract_by_obid, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
sqequalRule, 
introduction, 
cut, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}a,b:\mBbbR{}.    mcompact(\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  ;rmetric())  supposing  a  \mleq{}  b
Date html generated:
2019_10_31-AM-06_00_21
Last ObjectModification:
2019_10_30-AM-11_26_03
Theory : reals
Home
Index