Nuprl Lemma : real-interval-complete

a,b:ℝ.  mcomplete({x:ℝx ∈ [a, b]}  with rmetric())


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mk-metric-space: with d rmetric: rmetric() rccint: [l, u] i-member: r ∈ I real: all: x:A. B[x] set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] rmetric: rmetric() mcomplete: mcomplete(M) mk-metric-space: with d member: t ∈ T top: Top mconverges: x[n]↓ as n→∞ mcauchy: mcauchy(d;n.x[n]) mconverges-to: lim n→∞.x[n] y mdist: mdist(d;x;y) implies:  Q cauchy: cauchy(n.x[n]) converges-to: lim n→∞.x[n] y so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q converges: x[n]↓ as n→∞ exists: x:A. B[x] cand: c∧ B uall: [x:A]. B[x] prop: sq_exists: x:A [B[x]] nat: nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q ge: i ≥  decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False sq_stable: SqStable(P) squash: T
Lemmas referenced :  converges-iff-cauchy member_rccint_lemma istype-void istype-nat rleq_wf converges-to_wf nat_plus_wf istype-le rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int nat_properties nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rless_wf real_wf constant-rleq-limit nat_wf sq_stable__rleq rleq-limit-constant
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis lambdaEquality_alt applyEquality hypothesisEquality because_Cache productElimination independent_functionElimination dependent_pairFormation_alt dependent_set_memberEquality_alt independent_pairFormation productIsType universeIsType isectElimination setElimination rename inhabitedIsType equalityTransitivity equalitySymmetry functionIsType setIsType closedConclusion natural_numberEquality independent_isectElimination inrFormation_alt unionElimination approximateComputation int_eqEquality functionExtensionality imageMemberEquality baseClosed imageElimination equalityIstype

Latex:
\mforall{}a,b:\mBbbR{}.    mcomplete(\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    with  rmetric())



Date html generated: 2019_10_30-AM-06_44_12
Last ObjectModification: 2019_10_09-PM-05_01_33

Theory : reals


Home Index