Nuprl Lemma : real-interval-complete
∀a,b:ℝ.  mcomplete({x:ℝ| x ∈ [a, b]}  with rmetric())
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
rmetric: rmetric()
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
rmetric: rmetric()
, 
mcomplete: mcomplete(M)
, 
mk-metric-space: X with d
, 
member: t ∈ T
, 
top: Top
, 
mconverges: x[n]↓ as n→∞
, 
mcauchy: mcauchy(d;n.x[n])
, 
mconverges-to: lim n→∞.x[n] = y
, 
mdist: mdist(d;x;y)
, 
implies: P 
⇒ Q
, 
cauchy: cauchy(n.x[n])
, 
converges-to: lim n→∞.x[n] = y
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
converges: x[n]↓ as n→∞
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
sq_exists: ∃x:A [B[x]]
, 
nat: ℕ
, 
nat_plus: ℕ+
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
converges-iff-cauchy, 
member_rccint_lemma, 
istype-void, 
istype-nat, 
rleq_wf, 
converges-to_wf, 
nat_plus_wf, 
istype-le, 
rabs_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
real_wf, 
constant-rleq-limit, 
nat_wf, 
sq_stable__rleq, 
rleq-limit-constant
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
universeIsType, 
isectElimination, 
setElimination, 
rename, 
inhabitedIsType, 
equalityTransitivity, 
equalitySymmetry, 
functionIsType, 
setIsType, 
closedConclusion, 
natural_numberEquality, 
independent_isectElimination, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
int_eqEquality, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityIstype
Latex:
\mforall{}a,b:\mBbbR{}.    mcomplete(\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    with  rmetric())
Date html generated:
2019_10_30-AM-06_44_12
Last ObjectModification:
2019_10_09-PM-05_01_33
Theory : reals
Home
Index