Nuprl Lemma : real-interval-m-TB
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} .  m-TB({x:ℝ| x ∈ [a, b]} rmetric())
Proof
Definitions occuring in Statement : 
m-TB: m-TB(X;d)
, 
rmetric: rmetric()
, 
rccint: [l, u]
, 
i-member: r ∈ I
, 
rleq: x ≤ y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
totally-bounded: totally-bounded(A)
, 
nat: ℕ
, 
rneq: x ≠ y
, 
guard: {T}
, 
or: P ∨ Q
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
nat_plus: ℕ+
, 
rset-member: x ∈ A
, 
rmetric: rmetric()
, 
mdist: mdist(d;x;y)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
squash: ↓T
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
interval-totally-bounded, 
m-TB-iff, 
real_wf, 
i-member_wf, 
rccint_wf, 
rmetric_wf, 
metric-on-subtype, 
member_rccint_lemma, 
istype-void, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
intformle_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
rless_wf, 
rless-int-fractions2, 
istype-less_than, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_wf, 
int_seg_wf, 
rabs_wf, 
rsub_wf, 
int_seg_properties, 
nat_plus_properties, 
mdist_wf, 
istype-nat, 
sq_stable__rleq, 
rleq_weakening_rless, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
le_wf, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
isectElimination, 
setEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
sqequalRule, 
isect_memberEquality_alt, 
voidElimination, 
setIsType, 
universeIsType, 
productElimination, 
independent_functionElimination, 
closedConclusion, 
natural_numberEquality, 
addEquality, 
inrFormation_alt, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
multiplyEquality, 
productIsType, 
functionIsType, 
imageElimination, 
inhabitedIsType, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
equalityIstype, 
baseApply, 
intEquality, 
sqequalBase
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .    m-TB(\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  ;rmetric())
Date html generated:
2019_10_30-AM-06_51_15
Last ObjectModification:
2019_10_10-PM-05_33_47
Theory : reals
Home
Index